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h i g h l i g h t s

• The temperature of the Kinect V2 has an influence in the distance measurement.
• The casual uncertainty increases with the depth and the radial coordinate.
• The systematic uncertainty follows a harmonic trend called ‘‘wiggling error’’.
• Different materials and surfaces generate small offset in the depth measurement.
• Multiple reflections generate distortions in concave 3D geometry reconstruction.
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a b s t r a c t

A metrological characterization process for time-of-flight (TOF) cameras is proposed in this paper and
applied to the Microsoft Kinect V2. Based on the Guide to the Expression of Uncertainty in Measurement
(GUM), the uncertainty of a three-dimensional (3D) scene reconstruction is analysed. In particular, the
randomand the systematic components of the uncertainty are evaluated for the single sensor pixel and for
the complete depth camera. The manufacturer declares an uncertainty in the measurement of the central
pixel of the sensor of about few millimetres (Kinect for Windows Features, 2015), which is considerably
better than the first version of the Microsoft Kinect (Chow et al., 2012 [1]). This work points out that
performances are highly influenced bymeasuring conditions and environmental parameters of the scene;
actually the 3D point reconstruction uncertainty can vary from 1.5 to tens of millimetres.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Time-of-flight (TOF) systems are optical devices able to recon-
struct 3D scene through the measurement of the elapsed time be-
tween the emission of a light ray and its collection after reflection
from a target.

TOF cameras are particular TOF systems able to acquire a map
of distances through the diffusion of the light on the whole scene,
collimating the returning light on a camera matrix sensor and
measuring for each single pixel the phase shift between sending
and returning light. They are both faster and cheaper than 3D laser
scanners: instead of using a single sensor that rotates in spherical
coordinates, these cameras use amatrix of sensors and reconstruct
a 3D scene with a typical frame rate of 30–60 Hz.

Initially, TOF systemswhere built for the automotivemarket, for
car blind spot measurements, in order to intercept the proximity
of a person or another vehicle [2]. Now, TOF systems are able to
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help the driver doing manoeuvres and self-driving cars are soon
expected to be fully automated: they are able to perceive theworld
through these 3D sensors [3]. However, 3Ddepth cameras havehad
a major success with video games and entertainment. The second
version of the Microsoft Kinect (Kinect V2) is an accessory of the
XboxOne, that reconstructs a scene and identifies the player’s body
position for interaction with a virtual reality. It is also one of the
most efficient low-cost TOF camera available in the market. The
open source driver libfreenect2 [4] gives the possibility to use the
Kinect V2 device in Linux distributions and Point Cloud Library
applications.

This paper, based on the Guide to the Expression of Uncertainty
in Measurement (GUM) [5], presents a metrological characteriza-
tion of the Kinect V2 time-of-flight camera and a verification of its
reliability and technological limits. In order to determine 3D posi-
tion uncertainty, precision and accuracy have been estimated with
different configurations and tests.

Similar works have already been published for the first version
of the Kinect, uncertainty reconstruction has been studied inmany
papers [1,6–8]. The first version of the device opened a large
number of possible robotic applications using perception through
depth cameras [9–11].
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http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2015.09.024&domain=pdf
mailto:silvio.giancola@polimi.it
http://dx.doi.org/10.1016/j.robot.2015.09.024


A. Corti et al. / Robotics and Autonomous Systems 75 (2016) 584–594 585
Fig. 1. Four phase-stepped samples to compute phase offset φ [23].

Regarding TOF systems, performances has been analysed
in [12,13] with previous TOF cameras. Other studies focused on
performance comparison between several 3D cameras: Kinect V1
has been compared with other 3D systems in [14,15] as well as
Kinect V2 in [16,17].

Reconstruction of human body with Kinect V2 has been
evaluated in [18,19] for human interface purposes with the arm
and the face, but the depth measurement has not been taken into
account. Some applications underline the Kinect V2 characteristics,
performances andweaknesses [20–22] but they do not provide any
complete metrological evaluation.

In the first part of this paper, the system stability and in par-
ticular the drift due to temperature variations have been stud-
ied. Then, the analysis has been split into two levels named in
the following as pixel-wise and sensor-wise. Regarding the pixel-
wise characterization, themeasure uncertainty related to the three
positioning components, the angle of the incident light on the
scene and the target surface characteristics (colour and material)
has been evaluated. Successively the sensor-wise characterization
based on known geometries reconstruction, mixed-pixels analysis
and multiple paths error evaluation, have been performed. Before
discussing the results, the TOF camera model and the Microsoft
Kinect V2 main features will be presented.

2. Preliminary studies

2.1. Time-of-flight model

A time-of-flight (TOF) camera is composed of an infrared (IR)
emitter, a matrix of IR sensors and an electronic circuit able
to collect the reflected signal and to calculate the round trip
distance applying a proper mathematical model. The two main
TOF technologies on the market are the pulsed and the continuous
wave (CW).

In the first case, the delay between the sent and received pulses
is measured with a fast counter synchronized with the emitted
signal. The resulting time delay (∆t) is converted into distance (d)
by means of:

d = c
∆t
2

(1)

where c is the speed of light (in air).
This approach requires a very accurate counting process, not

possible to be achieved at room temperature [23].
In the second case, the CWmethodmodulates the emitted light

with a sinusoidal or, more frequently, a square wave with fre-
quency (f ) in the range of 10–100MHz [24]. In each period, in order
to obtain the phase offset φ, 4 samples (phase-stepped by 90°) of
the reflected light, captured by the sensor, are taken (Fig. 1).
The distance d can be computed using the following formula:

d =
c

4π f
φ with φ = atan

Q3 − Q4
Q1 − Q2


. (2)

In Eq. (2) it can be noticed that the (Q3−Q4) and the (Q1−Q2)
terms reduce the effect of constant offset on the measurements,
while their ratio reduces the effect of constant gain. Also to resolve
the whole 2π range must be taken into account the sign of
numerator and denominator, using the ‘‘atan2’’ function.

The phase-based nature of the CW method implies that there
is an aliasing distance, that delimits the range of the TOF system,
called ambiguity distance [23], defined as:

damb =
c
2f

. (3)

With a single frequency technique, the ambiguity distance can
only be extended reducing the modulation frequency and, as a
consequence, reducing accuracy [23].

Advanced TOF systems, with multi-frequencies technology,
permit an improvement both in extending the ambiguity range and
in maintaining the accuracy.

2.2. Kinect V2 for Windows characteristics

The Kinect V2 is composed of a TOF CW camera with a
resolution of 512× 424 pixels, an RGB camera with a resolution of
1920×1080pixels, an array of 4microphones and someelectronics
for signal elaboration. The camera is able to acquire at a maximum
frequency of 30 Hz. The operating field is defined by a depth range
of 0.5–4.5 m and a 70° horizontal and 60° vertical view angle [25].

A SoftwareDevelopment Kit (SDK), provided byMicrosoft, gives
the possibility to write software to control the device and, in
particular, to acquire and save, via USB 3.0 adapter, the depth
stream, the IR stream, the colour stream and the audio stream
values. The SDK also contains a function, based on the pinhole
camera model, called ‘‘coordinate mapper’’, which transforms
acquired depth map data from the camera reference frame to
the world reference frame, creating a point cloud. In the end,
processing the distance data returned by the TOF camera, with
proprietary algorithms, the Microsoft Kinect V2 is able to track up
to 6 bodies in its field of view and for each of them it calculates the
position and the orientation of 25 joints.

2.3. Setup

Data acquisition, for the characterization which will be part of
the next sections,was carried out using a dedicated C♯ software de-
veloped with Kinect for Windows SDK. After that, data processing
and plotting was carried out with Mathworks Matlab scripts.

The most of the test described in the next sections were per-
formed aligning the TOF camera with a planar target. This opera-
tion was carried out manually or, in the need of accuracy, with the
aid of a robotic arm and an IR camera calibration procedure [26].

In the last two experiments, particular setups, described in
detail in Sections 5.2 and 5.3, were employed.

3. Stability of the system

Electronic sensors and signal conditioning circuits are influ-
enced by temperature fluctuations, that often cause output drift.
Since the Kinect V2 getswarmer after someminutes of activity, it is
important to analyse the stability of the system during static mea-
surements.Moreover, inside the device a thermostat controlled fan
is located, so the planned test aims to denote differences between
acquisitions shot with or without a continuous air flow.
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Fig. 2. Detail and general specifications of the fan used as external cooling system.

As a matter of fact, it is not possible to manually turn on or off
the internal cooling system. So, an external fan has been applied
over the original one (Fig. 2) in order to have the total control on the
air flow. In fact, the external cooling system continuous rotation
sets the internal temperature under the low thermostat threshold,
as to prevent the activation of the controller and the simultaneous
rotation of the two fans.

A first test has been carried out acquiring 20000 samples at
30 Hz, placing the sensor at about one metre from a white planar
wall. In order to highlight themeasure trend, amoving average has
been calculated on 500 distance samples returned by the central
pixel of the sensor. For the entire duration of this test (10 min), the
internal cooling system remained off, because the temperature of
the sensor remained below the high level threshold.

A second 20000-sample acquisition was then performed with
the external fan switched on, using the same setup of the previous
test. The central pixel distance data and the moving average of the
two tests are plotted in Fig. 3.

While the figure on the left shows an increase of themean value
ofmore than 2mm in 10min, the test carried outwith a continuous
cooling system (on the right), able tomaintain a stable temperature
value, does not present any significant drift, but only a random
spread confined into a band of 0.6 mm.

In order to obtainmore information and to validate the previous
tests’ results, 24-hours acquisitions, with and without the external
fan, have been carried out at 1 Hz sampling frequency. The results
(raw data and moving average) are presented in Fig. 4.

Without the external fan, the system presents a 4 h transient,
characterized by an oscillating trend, due to an alternating oper-
ation of the internal fan. After this phase, the device temperature
reaches a higher value that inhibits the shutdown of the fan, which
continuously rotates and stabilizes the system until the end of the
test.

The second test confirms the hypothesis that the constant
rotation of the fan can ensure a rapid stabilization of the
measurement and a reduction of the transitory phase. In all the
tests successively presented, a fan, fixed to the rear of the Kinect
V2, will be used and maintained in constant rotation.

Finally, with the same setup of the previous test, 5000 depth
samples, returned by the central pixel, have been acquired. The
histogramof the distancemeasurements andone of the cumulative
probability distribution function are depicted in Fig. 5. It can
be noticed that the sample has a Gaussian distribution. For this
reason, in the following part of the article, all the datasets can be
considered normally distributed in order to compute mean values
and standard deviations.

4. Pixel-wise characterization

4.1. Random error in the space frame

In the first part of this test, precision of the camera at differ-
ent distances is evaluated. Kinect V2 was screwed on a photo-
graphic tripod and aligned with a planar white target mounted on
a robotic arm flange able to translate along the camera axe with an
accuracy of 0.1 mm. Because of the maximum length (1000 mm)
of the completely extended robotic arm, the operating distance
(800–4200 mm) was divided into 4 parts, with 200 mm overlap
(800–1800mm/1600–2600mm/2400–3400mm/3200–4200mm).
In each of them, the plane was translated with 20 mm steps
and 4000 depth samples per pose were acquired. Only the data
Fig. 3. Static measurements of a single pixel in time without (a) and with (b) cooling system.
Fig. 4. Static measurements of a single pixel in time during 24 h without (a) and with (b) cooling system.
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Fig. 5. Histogram (a) and cumulative probability distribution function (b) of 5000 distance measurements performed at 1000 mm from a planar wall.
Fig. 6. Absolute (a) and percent (b) casual error in function of the distance.
Fig. 7. Casual error in function of the pixel position (a) and along the field of view (b).
returned by the central pixel are analysed and standard deviation
versus mean value is plotted in Fig. 6(a).

This test denotes a linear trend (R2 equal to 0.9916) from
1.2mm at about 1500 to 3.3 mm at themaximum reliable distance
(4200 mm) with an initial noisy baseline. This is due to the fact
that the higher is the distance from the target, the lower is the
quantity of IR light caught by each pixel, and this is responsible
for the degradation of the signal-to-noise ratio. Similar result can
be found in [20].

Considering a set of acquisitions shot with Kinect V2 1250 mm
far fromaplanarwall, standard deviation of each pixel is calculated
and plotted into an image having the sensor’s aspect ratio. Fig. 7(a)
denotes a relation between the standard deviation trend and the
radial coordinate of the sensor because of the IR light cone, and so
the illumination of the scene, is not homogeneous [27]. This leads
corner points to be more noisy than the central ones. Finally, in
Fig. 7(b), the results obtained analysing seven acquisitions shot in
a field of view extended from 750 to 3750mm along Z camera axis
are reported. Corner points (with standard deviation>15mm) are
probably located outside the illumination cone and so their depth
value, returned by Kinect V2, is not reliable.

4.2. Systematic error in the space frame

The aim of this test is to determine the accuracy of the single
pixel distance measure. The experiment was conducted using the
same setup described and data acquired in the 4.1.

In Fig. 8(a) the difference between real and measured distances
is plotted. Four graphs, one for each step, are aligned minimizing
the distance of the overlapping points. This harmonic shaped trend,
called ‘‘wiggling error’’, is in agreementwith literature [28,29], and
depends on the non idealities of the electronics and mainly on the
non exactly sinusoidal shape of themodulated signal, that contains
odd harmonic components.

In Fig. 8(b) a fitting curve (R2 equal to 0.9915), calculated as a
sum of sinusoidal functions, is plotted over the measured points.

Moreover, analysing the data set acquired at 1250 mm, the
mean value of each pixel’s depth is calculated and a reference best
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Fig. 8. Distance systematic error (a) with fitting curve (b).
Fig. 9. Distance systematic error inside the sensor.

fitting surface is computed on the point cloud obtained processing
the meant distance data with the intrinsics parameters look up
table (LUT) extracted from the SDK (‘‘coordinate mapper’’). Fig. 9
denotes a distance error confined into a band of less than 20 mm;
central points present a positive displacement, while corner ones
have a negative one.

Furthermore a point with an high displacement value can be
noticed near the centre of the image, probably due to a defect into
the sensor matrix.

4.3. Error due to the incidence angle on the target

4.3.1. Central pixel analysis
In this section, the influence of the incidence angle between IR

light and the target plane on the distance measure is evaluated. A
similar setup of the 4.1, with a smaller robot, is used in order to
guarantee very accurate rotations around axes parallel to sensor’s
X and Y . From 0° (target parallel to the camera sensor) to 60°, with
5° step, 4000 distance frames are acquired, for each pose. Rotations
around both a vertical and horizontal axis are performed.
Standard deviation of central pixel is calculated and depicted in
Fig. 10.

From the analysis of the graphs, any particular relation between
angle and single pixel distance measurement is pointed out.
This test, extended to a central portion of the sensor, will be
investigated into the next paragraph.

4.3.2. Centred sensor’s crop analysis
This section extends the test described in 4.3.1. With the aid of

a robotic arm, a planar white target is rotated into 13 poses around
a vertical axis from 0° to 60°with 5° steps. Depth data returned by
a symmetric centred part of the sensor are considered. Standard
deviation of each pixel is calculated and some significant results
are plotted in Fig. 11.

Analysing the images, a band distribution (parallel to the
rotation axis) of the computed standard deviation values is well
evident and denotes its correlation with the incidence angle of the
single ray. The higher is the angle, the lower is the amount of light
per area unit returned by the target (and so the signal-to-noise
ratio).

A similar test, with same results was conducted rotating around
an horizontal axis.

4.4. Error due to the target characteristics

4.4.1. Effect of the colour
Dependency of the measure on target colour is discussed in

this section. For this test, different material samples have been
used (cardboard, adhesive film and fabric) and for each of them,
some different colours have been selected (black, white, yellow,
red, blue and green). One sample at a timewas attached on a planar
surface, aligned with the camera, at a distance of about 775 mm
and 4000 acquisitions of depth values were performed. The results
are plotted on error bar graphs (Fig. 12). Analysing them, a standard
deviation value of about 1mm, constant in each set of acquisitions,
Fig. 10. Standard deviation value depending on target rotation angle around vertical (a) or horizontal (b) axis.



A. Corti et al. / Robotics and Autonomous Systems 75 (2016) 584–594 589
Fig. 11. Standard deviation related to the ray incidence angle.
Fig. 12. Error distribution of different colour targets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
can be noticed. So it can be stated that surface colour has no effect
on it.

On the contrary these tests denote an evident offset among the
mean values of each set of acquired data. In particular, cardboard
samples returned a 0.8 mm difference between the nearest and
the farthest detected object. A similar error can be extracted from
adhesive film data. For the fabric ones instead, the distance offset
is confined into a 0.5 mmwide band.

Considering the three sets of results together, it is not possible
to find a correlation between a precise offset value and a particular
colour, so the analysis was extended to different material objects.

4.4.2. Material
Dependency of the measure on the target material is discussed

in this section. For this test, samples of five common materials
were used (cardboard, plastic, aluminium, wood and fabric). The
test performed is similar to the previous one.

Plotting the results of this test (Fig. 13) it can be observed that
the lower distance is associated with the most reflective material
(aluminium). On the contrary, the object seen as the farthest by
the camera, is the wooden one (characterized by a rough surface).
Also in this test, standard deviation is almost constant and so no
correlation between its value and the material can be pointed out.

Finally, a circular sample of reflective tissue is acquired, a
commonly used material in IR computer vision. Because of its high
reflectance, that saturates the camera pixels, this sample is not
seen by the Kinect V2 at any distance (Fig. 14).
Fig. 13. Error distribution of different material targets.

Considering both the previous analyses it can be deduced that
the maximum difference between the mean values is less than a
millimetre and so the influence of the colour and thematerial of the
target on the measure can often be neglected. Some measurement
problems canderive from the acquisition of reflective surfaces [21].

5. Sensor-wise characterization

5.1. Known geometry reconstructions

In this section the quality in the reconstruction of known ge-
ometries like planes, cylinders and spheres is analysed, measuring
the distribution of the distances between the acquired points and
a mathematical model.
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Fig. 14. Reflective tissue test: setup (a) and corresponding point cloud (b).
Fig. 15. Plane: point-model distance (a) and error distribution (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
5.1.1. Plane
A plane parallel to the sensor, about 1000 mm distant, is

acquired. The point cloud has an extension of approximately 1.4 m
along the X axis and 1.2 m along the Y axis. So this result confirms
that the viewing angle of Kinect V2 is 70° horizontal and 60°
vertical. The resolution at 1m, along the direction identified by the
X and Y axis, is about of 2.7 mm.

An operation of planar best fitting is applied to the point cloud.
Fig. 15(a) shows the obtained plane aligned with that plane. The
Reference system on the right of the figure shows the position of
the sensor. Each points are painted in function of the distance from
the model plane. A blue colour represents a closed point, a green
colour an intermediate point and a red colour a far point.

Figs. 15(b) depict the error distribution into the sensor area. The
greater distortion, of about 15 mm, can be observed at the corners
of the image. Nevertheless, in the central part of the image, the
distance is confined into a band of about ±5 mm, while, around
the corners, it reaches values of tens of millimetre.

The displacement error of the corner points from the reference
plane derives from optical distortions, introduced by the IR camera
lens, that are not completely compensated by the mathematical
model-based conversion from depth images into point clouds.

5.1.2. Cylinder
The cylinder is a simple object, commonly used to test the

quality of 3D reconstruction. A cylindrical shaped object, having
a diameter of about 500 mm, was placed at a distance of about
1000 mm from the sensor.

Using the Iterative Closest Point algorithm, implemented in PCL,
the acquired points are aligned with a computer-generated model
of the cylinder.

Figs. 16(a) and (b) highlights the distance error distribution
where most of the acquired data are less than 25 mm distant from
the model. Furthermore, as stated in Section 5.1.1, the points with
a greater deviation (tens of millimetres) are those corresponding
to the upper and lower edge of the sensor.

5.1.3. Sphere
Finally the quality of the reconstruction of a spheric surface is

evaluated, scanning a portion of a 105 mm radius sphere-shaped
object, 1000 mm far from the sensor. 3D points are aligned with
the model with an Iterative Closest Point algorithm (Fig. 17(a)).

Error distribution (Figs. 17(a) and (b)) is almost symmetric,
centred in zero and confined in a band of less than 5 mm. Only
contour points are tens of millimetres distant from the model
surface, probably due to mixed pixel error, described in the next
section.

5.2. Mixed pixels error

This test aims to analyse the quality of edge reconstruction. A
3mm, planar surface was posed about 350mm far from a 1m2 flat
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Fig. 16. Cylinder: point-model distance (a) and error distribution (b).
Fig. 17. Sphere: point-model distance (a) and error distribution (b).
background. Point clouds are acquired, with the Kinect V2 device
manually alignedwith the setup, at the distance of about 1050mm
from the target. Also the background is acquired.

The acquisition denotes some spurious points in the jump from
foreground to background, as shown in red in Fig. 18(a). We used a
sample consensus segmentation algorithm available in PCL for the
identification of the 2 planes, as shown in Fig. 18(b). The remaining
points, not belonging to any plane, correspond to the mixed
pixels.

This phenomenon, also called jump edge [30], is a consequence
of a weighted average operation [28], in the depth map, applied
to neighbouring pixels, in order to reduce noise. As a consequence
of this, an intermediate value is attributed to contiguous pixels
belonging to the transition areas.
This test was extended to a situation in which the background
plane is too far to be acquired (distance > 4500 mm). In this case
the mixed pixel error is not present.

5.3. Multiple path error

A TOF camera well-known measure problem is the multipath
error. This phenomenon originates from multiple reflections,
generated into concave geometries in which part of IR light is
reflected from one surface to the other, before returning to the
camera sensor [24,31].

The path covered by the signal, longer than the ideal case,
generates a distorted point cloud. In order to analyse the error
entity, a specific setup was built with two surfaces (a white wall
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Fig. 18. Point cloud (a) where red dots denote mixed pixel and the 2 plane recognized with sample consensus algorithm (b). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. Point cloud aligned with the reference markers in red (a) and error distribution (b). The wall denotes less distortion than the wooden panel. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
and a wooden panel), opportunely aligned, in order to create a
dihedral.

First of all, a computer model of the surfaces was reconstructed
acquiring nine points on each plane with a Leica TS06 total station,
useful to compare the point cloud returned by Kinect V2.

Because the total station and the Kinect V2 devices present a
different pose and reference frame, three circular blackmarkers are
pasted on the furthest part (from the plane–plane intersection line)
of each surface. Measuring their centre coordinates, with the total
station, and extracting their barycentre position, with Kinect IR
image analysis, it was possible to obtain themutual transformation
matrix and to align the point cloud into the total station reference
frame.
Fig. 19(a) depicts the alignment between the point cloud and
the reference planes described by the 9 red dots for each wall.

An error of some tens of millimetre (up to 80 mm) affects the
pixels less than 250mm distant from the plane–plane intersection
line (Fig. 19(a)).

6. Conclusions

In this paper, a metrological characterization of the Kinect
V2 TOF camera has been presented in order to evaluate its
measurement performances and limits in 3D reconstruction. The
study of the system stability has pointed out the influence of
the sensor’s temperature on the returned depth values. Using
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an external fan, in constant rotation, this problem has been
considerably reduced, obtaining more stable data.

In the pixel-wise analysis, the central pixel casual error
evaluation shows that measurement uncertainty varies linearly
with the displacement, up to a maximum value of 3.3 mm at
4200 mm. Moreover, analysing the depth data acquired by the
whole sensor, it has been noticed that the distance measure
uncertainty increases with the radial coordinate of the frame and
the acquisitions shot farther than 1500mm from the camera (along
Z axis), present not reliable corners’ depth values, due to a lack of
illumination of the peripheral portion of the scene. The systematic
error of the central pixel has a harmonic-shaped trend and can
assume values into a range of [−10; 15 mm]. Tests performed
with a tilted target denote a correlation between the computed
standard deviation value and the light-plane incidence angle. The
depth measurement offset due to surfaces of different materials
and colours can be neglected, reflectivity is more relevant. If the
target is very reflective, the Kinect V2 is not able to perform a
reliable measure.

Regarding the sensor-wise level analysis, some known geome-
tries have been reconstructed (plane, sphere, cylinder). The max-
imum observed error between the mathematical model and the
Kinect V2 reconstruction is about 10 mm. The mixed-pixel prob-
lem has been observed only if the target is acquired in front of a
background located in the camera field of view. Finally, the mul-
tiple path error, one of the major technological issue of the TOF
cameras, has been observed in Kinect V2 acquisitions generating
distance errors up to 80 mm.

Future works will be focused on the analysis of measurement
uncertainty in different illumination conditions and on a deep
study of the measurement casual error in function of light
incidence angle and NIR reflectivity of the objects surface.
Comparison with currently available TOF cameras will be done
in future works. The characterization will also be extended to
the body joints’ position measurements and tracking, as well as
scene reconstruction with the Kinect V2 device (Kinect Fusion,
SLAM).
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