

POLITECNICO DI MILANO

Motion capture: An evaluation of Kinect V2 body tracking for upper limb motion analysis

Silvio Giancola¹, Andrea Corti¹, Franco Molteni², Remo Sala¹

¹ Vision Bricks Laboratory, Mechanical Departement, Politecnico di Milano

² Movement Analysis Lab of Valduce Hospital "Villa Beretta" Rehabilitation Centre

An evaluation of Kinect V2 body tracking for upper limb motion analysis

POLITECNICO MILANO 1863

Ospedale Valduce

Summary

- Introduction on Movement Analysis and 3D Computer Vision
- Vision systems for Motion Capture
 - Multi-View Stereoscopic system : BTS Smart-DX 7000
 - Time-of-Flight Camera: Microsoft Kinect V2
- Kinematics of the upper limb
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

An evaluation of Kinect V2 body tracking for upper limb motion analysis

POLITECNICO DI MILANO

Wrist position measurement

- Elbow angle • measurement
- Uncertainty Estimation
 - Wrist position
 - **Elbow** angle •
- Conclusion •

Summary

Introduction

•

•

• Vision systems for

Motion Capture

• Kinematics analysis

BTS Smart-DX 7000

Experimental Setup

Microsoft Kinect V2

References

Introduction on Movement Analysis

- Study of the capacity of a person to realize a determined movement.
- It analyses of the kinematics and/or dynamics of the human body. •
 - **Kinematics** analysis
 - \succ Range of motion
 - Absolute position in space
 - Speed, Acceleration, Jerk
 - **Dynamics** related to the movement, using inertia and mass information and external forces measurement
 - Forces/Moments on the articulation
 - > Forces applied on the muscles

Angle

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Introduction on Movement Analysis

- Valduce Hospital "Villa Beretta"
 - Rehabilitation Centre
 - Costa Masnaga (LC)
 - Gait and Movement Analysis Laboratory
 - Dynamic EMG / 3D Motion analysis
 - Evaluates causes of walking and related movement problems
 - Analyses muscle function and dexterity
 - Focuses on patients with nervous system damage,
 - Provides Basis for corrective physical, medical and surgical therapies

Ospedale Valduce 🔜

Villa Beretta

POLITECNICO DI MILANO

An evaluation of Kinect V2 body tracking for upper limb motion analysis

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Introduction on 3D Computer Vision

Vision systems are **non contact optical** measurement techniques

- + With no loading effect on the measured system (unlike IMUs)
- + With no damage on the measured system
- + Remotely measures simultaneous points
- Sensible to occlusion, material reflection and light conditions

3D Vision systems:

- Permits the measurement of the position of points in a scene
- Deals with **point clouds**: a set of 3D points, that can be:
 - Dense and structured
 - ightarrow Matrix of points
 - Sparse and unstructured
 → Small array of points
- Allows body recognition and position estimation in 3D

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Introduction on 3D Computer Vision

Different techniques exist:

- Multi-View Stereoscopy:
 - 2 or more cameras
 - Sparse point cloud reconstruction
- Active triangulation:
 - Single camera with structured light projector
 - Laser blade for static scene
 - Codified light pattern for dynamic scene
- Time of Flight camera (TOF):
 - Light echo measurement (LiDAR)
 - Time between emission of modulated light and its reception
 - Diffused light
 - Dense point cloud reconstruction

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Vision systems for Motion Capture

Stereoscopic system

- BTS Smart-DX 7000
 - Up to 16 cameras
 - Resolution of 2048 x 2048 pixels
 - Up to 2000 fps (500 fps at full frame)
 - Precision under 0.1 mm
 - Volume of 6 x 6 x 3 m
 - Strobe wavelength of 850 nm (IR light)
- Set of reflective markers fixed on the body

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Vision systems for Motion Capture

Stereoscopic system

- It exists plenty of Marker Placement
 - Body Segment CM
 - Plug-in-Gait
 - Helen Hayes (Davis)
 - Cleveland Clinic Model
 - Golfer Full-Body
 - ...
- Main drawbacks:
 - Measurements need to be realized on the skeleton, not on marker fixed on soft tissues that are not even rigid respect to the skeleton.
 - **Markers** are numerous, complicated and fastidious to fix, and results depend entirely on how these marker are fixed.
 - **Expensive** (>200 k€)

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle
 measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Vision systems for Motion Capture

TOF Systems

- Microsoft Kinect V2
 - RGB-D camera
 - 512 x 424 pixels, up to 30 Hz
 - Range from 0.5 to 4.5m Field of view 70 $^\circ$ x 60 $^\circ$
 - Precision around 2 mm for the point cloud reconstruction
 - A. Corti, S. Giancola, G. Mainetti, R. Sala, "A metrological characterization of the Kinect V2 time-offlight camera", *Robotics and Autonomous Systems*, vol. 75, pp. 584-594, 2016.
- Integrated software for markerless human-motion capture
 - Human body seen with 25 joints
 - On-line elaboration for real-time application
 - Machine learning black box feed with thousands of bodies (adults)
 - J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, R. Moore, **"Real-time human pose recognition in parts from single depth images"**, *Communications of the ACM*, vol. 56, no. 1, pp. 116-124, 2013.

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Vision systems for Motion Capture

TOF Systems

- Markerless human-motion tracking
 - Fully tracks up to six bodies simultaneously
 - Tracks up to 25 joints
 - Position in 3D space (in meters)
 - Absolute orientation (in quaternion)
 - (Hand state tracking)
 - (Face recognition)
 - Low cost (200 €)

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta - Experimental Setup

Gait and Movement Analysis Laboratory

- 1. BTS Smart-DX 7000 (8 cameras 250 fps)
- 2. Footboard platform
- 3. Vision system for video recording

Our Setup

- 4. Kinect V2
 - Single 3D camera 30 fps

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta - Experimental Setup

Registration of the 2 systems

- Set of point dispatched on the scene
 - Black circle detected by the Kinect V2 system
 - Reflective semi spheres detected by the BTS system

- 2 sparse point clouds measured and aligned through the solving of the Procrustes problem with an SVD-based algorithm
 - Dorst, Leo. "First order error propagation of the procrustes method for 3D attitude estimation." *Pattern Analysis and Machine Intelligence, IEEE Transactions* on 27.2 (2005)
 - Calculate the rotation matrix and the translation vector of one reference system respect to the other one
 - Computationally efficient and immediate (closed form solution)
 - Minimize the root mean square error

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta - Experimental Setup

- Single Marker Placement:
 - Wrist
 - Elbow
 - Shoulder
 - Cervical C7 vertebra
 - Thoracic T5 vertebra

13 / 25

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta - Standardized Exercises

Human Motion Capture

- Standardized exercises
 - Abduction
 - Hand-to-mouth
 - Reaching
 - Flex Elbow
 - Squat

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Standardized Exercises

Focus on Inverse Kinematics

- Position reaching (Wrist)
 - Position measurements in 3D space
 - Abduction exercise
 - Hand-to-mouth exercise
 - Reaching exercise

- Angle motion ranges
 - Range of angular motion, min and max extension
 - Flex Elbow exercise
 - Squat exercise

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Position Measurement

• Abduction exercise:

Comments:

- X / Y follow the same pattern
- Offset in Z (depth)
- Different positions are tracked for the wrist, translated in Z, due to marker placement

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Position Measurement

• Hand-to-mouth exercise:

Comments:

- Follow the same pattern
- Offset in X, Y & Z
- Different positions are tracked for the wrist, translated in all directions, due to marker placement

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Position Measurement

• Reaching exercise:

Comments:

- Follow the same pattern
- Offset in X, Y & Z
- Different positions are tracked for the wrist, translated in all directions, due to marker placement

POLITECNICO DI MILANO

An evaluation of Kinect V2 body tracking for upper limb motion analysis POLITECNICO DI MILANO

Summary

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Angle Measurement

• Flex elbow exercise:

Comments:

30

- Follow the same pattern
- Extrema are differents
- Different positions are tracked for shoulder, elbow and wrist

An evaluation of Kinect V2 body tracking for upper limb motion analysis

Summary

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Angle Measurement

Squat exercise:

Comments:

14

- Follow the same pattern
- Extrema are differents
- Different positions are tracked for hip, knee and ankle

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Standard Exercises

Global Results / Comments

- The **global movement** is measured by both system: the Kinect is able to track the position of the joints in a similar way than the single marker placement with BTS
- 2.5 / 3 dimensions systems
 - Kinect: 2.5D system acquire from a single point of view
 - Suffer from occlusion
 - BTS: full 3D system acquire from **different point of view**
 - Allow a full 3D tracking
- Different positions are tracked by the 2 systems:
 - Kinect: more "true" position of the joint
 - BTS: a **marker** representative for the joint

POLITECNICO DI MILANO

22 / 25

Summary

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Accuracy Estimation

Wrist position uncertainty measurement estimation:

- Static position for more than a minute (30Hz)
 - > 1800 samples
- HP filter at 0.01Hz
 - Removes drift
- LP filter at 5Hz
 - Reduces noise
- Statistical characterisation
 uncortainty = f(std)
 - uncertainty = f(std)
- Position uncertainty < 1 mm

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Inverse Kinematics
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Villa Beretta – Accuracy Estimation

Elbow angle uncertainty measurement estimation

- Static position for more than a minute (30Hz)
 - > 1800 samples
- HP filter at 0.01Hz
 - Removes drift
- LP filter at 5Hz
 - Reduces noise
- Statistical characterisation
 - uncertainty = f(std)
- Angle uncertainty < 0.25 degree

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position
 measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

Conclusion

Kinect V2 sensor for gait analysis:

- Markerless vision system
 reduces preparation time
- Track position inside a body
 real joints, not markers
- Precision < 1 mm; < 0.3 degree
 > aggravation from one order of magnitude respect to BTS solution

Next Steps:

- Extend study on all the joints measured by the Kinect
- Extend to more than 1 Kinect
 Multi-view RGB-D measurement
- Extend to Dynamics study:
 - Pass trajectories to Villa Beretta Multi Body model in order to get muscle activity measurements
 - Coupling with BoB (Biomechanics of Bodies) Human Multi Body Kinematics and Dynamics model

POLITECNICO DI MILANO

- Introduction
- Vision systems for Motion Capture
 - BTS Smart-DX 7000
 - Microsoft Kinect V2
- Kinematics analysis
 - Experimental Setup
 - Wrist position measurement
 - Elbow angle measurement
- Uncertainty Estimation
 - Wrist position
 - Elbow angle
- Conclusion
- References

References

- Sutherland, David H. "The evolution of clinical gait analysis: Part II Kinematics." Gait & posture 16.2 (2002): 159-179.
- Corti A., Giancola S., Mainetti G., Sala R. "A Metrological Characterization of Kinect V2 Time-of-Flight Camera" Elsevier Editorial System for Robotics and Autonomous Systems: SI: 3D Perception with PCL (2016)
- Shotton, Jamie, et al. "Real-time human pose recognition in parts from single depth images." Communications of the ACM 56.1 (2013): 116-124.
- Ferrante, Simona, et al. "A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients." *Journal of neuroengineering and rehabilitation 8.1 (2011): 47.*
- Carda, Stefano, et al. "Gait changes after tendon functional surgery for equinovarus foot in patients with stroke: assessment of temporo-spatial, kinetic, and kinematic parameters in 177 patients." American Journal of Physical Medicine & Rehabilitation 88.4 (2009): 292-301.
- Shippen, James M., and Barbara May. "Calculation of muscle loading and joint contact forces during the rock step in Irish dance." Journal of Dance Medicine & Science 14.1 (2010): 11-18.